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AABBSSTTRRAACCTT      

Artificial Neural Networks (ANN) constitute a set of powerful mathematical tools 

which belong to Artificial Intelligence (AI) techniques and have the ability to model 

an unknown non-linear system using input-output data only (Haykin, 1999). This 

technique is called “black box”, where our system is represented by a black box 

where only input and output signals are visible, whereas no information from within 

the box is available: i.e. we do not know the specific mechanism that governs the 

system.  

Depending on the way that the neurons are interconnected we distinguish 

several neural network architectures; the most popular ones are: Feedforward Neural 

Networks (FFN), Recurrent Neural Networks (RNN), Kohonen neural networks and 

Radial Basis Function (RBF) neural networks. The latter form a special neural 

network architecture which is characterized by two main advantages: The simplicity 

of its structure, and the speed of the learning algorithms it employs. 

The procedure during which the neural networks learn the relation between the 

input and the output is called training. The RBF network training procedure is divided 

into two phases. In the first phase, the structure of the network is determined. In the 

second phase, the parameters of the network which are related to the synaptic weights 

between the hidden nodes and the nodes of the output layer are calculated using the 

method of linear regression (Leonard & Kramer, 1991, Powell, 1987). The typical 

RBF training methodology which is being used in the determination of the structure 



of the network, i.e. in the calculation of the hidden node centers is an iterative 

procedure called the k-means algorithm (Darken & Moody, 1990, Macqueen, 1967, 

Moody & Darken, 1989). This algorithm exhibits two basic drawbacks: It is unable to 

automatically select the proper number of RBF hidden node centers and it requires 

high computational times. 

In order to overcome the aforementioned problems, a new algorithm was 

introduced in a recent publication, which determines the structure of the network 

depending on a fuzzy partition of the input space (Sarimveis et al., 2002). This 

method called the fuzzy means algorithm presents several advantages over the typical 

RBF training methodologies and has been proved to be more efficient in non-linear 

system modeling. The algorithm starts with a fuzzy partition of the input space, and 

then selects the structure and the centers of the network in only one step, requiring 

only one pass from the training examples, while it completes the training procedure in 

very limited computational times.  

In this work, we employ a variation of the fuzzy means algorithm called the 

non-symmetric fuzzy means algorithm, which presents the same advantages with the 

symmetric one but has more flexibility, which results in better networks in terms of  

accuracy and/or network complexity. By training RBF neural networks with the fuzzy 

means algorithm, we can model any non-linear system using only input-output data 

from it. 

A system that would be rather difficult to model using first principle equations 

is the problem of predicting the refractive index. The refractive index is a fundamental 

physical property of substance with great importance that is not limited only to an 

optical context, since it is directly related to electrical, magnetic, thermal, etc 

properties. For example, the refractive index can be used in order to identify a 

particular substance, to confirm its purity, or to measure its concentration. 

In this work, we trained RBF neural networks with the non-symmetric fuzzy 

means algorithm, using as inputs experimental data like wavelength, temperature and 

concentration in order to model the refractive index of several substances 

(Alexandridis et al., 2011). To be more specific, we studied two cases involving the 

prediction of the refractive index of two semiconductor material crystals (silicon and 

germanium) and a water-ethanol mixture. 

For the case of silicon and germanium, the objective was to predict the 

refractive index for each semiconductor crystal using as inputs the wavelength and 



temperature (Frey et al., 2006). The RBF models trained with the non-symmetric 

fuzzy means algorithm presented more satisfying results, compared not only to other 

neural network training methodologies but also to empirical equations that were built 

solely for this purpose. Figure 1 shows a three-dimensional plot of the surface 

predicted by RBF network trained with the non-symmetric algorithm, together with 

the experimentally measured data points, where we can see that the experimental 

values are pretty close to the predictions. The importance of the produced model is 

significant, since it provides us with a nomograph that can be used to identify the 

refractive index for every combination of wavelength and temperature, while the 

measurements are restricted to a few specific values of wavelength and temperature.  

Employing a similar process to the case of silicon, we trained RBF models 

with the non-symmetric fuzzy means algorithm for the case of germanium. Once 

more the non-symmetric algorithm outperformed the other neural network training 

algorithms and the empirical equations.  

In order to demonstrate the generic nature of the neural network approach, we 

tested a different case, examining the prediction of the refractive index for a two-

component mixture comprising of ethanol and water. The study of the refractive index 

for this two-component mixture is rather interesting since it follows a non-linear 

mixing rule (Rioboo et al., 2009). For this case, we trained neural network models that 

can  predict  the  refractive  index  of  an  ethanol-water  mixture,  using  as  inputs the 

 

 

 

Figure 1. Nomograph based on RBF network predictions for Silicon. 



mixture concentration in water and the temperature. Figure 2 shows the surface plot of 

the refractive index predicted by the network versus the concentration and 

temperature, together with the experimentally measured data points. It can be seen 

that the surface produced by the RBF network approximates the measured data with 

great accuracy.  

In all the cases we examined, the results showed that the produced neural 

network models provide an accuracy of several decimal places that in most cases is 

rather close to the measurement accuracy. Due to the generic nature of neural 

networks, they can be applied to similar cases for any kind of material, modeling the 

effect of various parameters affecting the refractive index.  

Results from this work were submitted for publication to the scientific journal 

Materials Science and Engineering: B. 

 

 

 

Figure 2. Nomograph based on RBF network predictions for Ethanol-Water. 
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